Go map 源码分析

哈希表

哈希表的查询效率贼高,时间复杂度是 O(1),这是咋实现的呢?

Go 的哈希表结构就是 map,这次我们就来探索一下它底层是咋回事~

3,2,1,上源码!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
const (
// Maximum number of key/value pairs a bucket can hold.
bucketCntBits = 3
bucketCnt = 1 << bucketCntBits
)
// A header for a Go map.
type hmap struct {
// Note: the format of the hmap is also encoded in cmd/compile/internal/reflectdata/reflect.go.
// Make sure this stays in sync with the compiler's definition.
count int // # live cells == size of map. Must be first (used by len() builtin)
flags uint8
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
hash0 uint32 // hash seed

buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)

extra *mapextra // optional fields
}

// mapextra holds fields that are not present on all maps.
type mapextra struct {
// If both key and elem do not contain pointers and are inline, then we mark bucket
// type as containing no pointers. This avoids scanning such maps.
// However, bmap.overflow is a pointer. In order to keep overflow buckets
// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
// overflow and oldoverflow are only used if key and elem do not contain pointers.
// overflow contains overflow buckets for hmap.buckets.
// oldoverflow contains overflow buckets for hmap.oldbuckets.
// The indirection allows to store a pointer to the slice in hiter.
overflow *[]*bmap
oldoverflow *[]*bmap

// nextOverflow holds a pointer to a free overflow bucket.
nextOverflow *bmap
}

// A bucket for a Go map.
type bmap struct {
// tophash generally contains the top byte of the hash value
// for each key in this bucket. If tophash[0] < minTopHash,
// tophash[0] is a bucket evacuation state instead.
tophash [bucketCnt]uint8
// Followed by bucketCnt keys and then bucketCnt elems.
// NOTE: packing all the keys together and then all the elems together makes the
// code a bit more complicated than alternating key/elem/key/elem/... but it allows
// us to eliminate padding which would be needed for, e.g., map[int64]int8.
// Followed by an overflow pointer.
}

这个就是 Go map 底层结构的部分源码了,业务代码中的每一个 map 底层对应的就是一个 hmap

hmap 有个字段 buckets,指向了 bmap 数组,bmap 里放的就是存进 map 里的 key value 了,每个 bmap 里都可以保存 bucketCnt 个键值对

啥?你说这个 bmap 里不就一个 tophash 字段,哪有什么 key value?

bmap 里 key value 在哪

1
2
3
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))

v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))

key value 是这样通过指针计算获取的,key value 数据存在 tophash 的后边(编译阶段会扩充 bmap 结构)

怎么知道数据放在哪个 bmap

下一行源码是 map 在决定数据放到哪个 bucket 时用的

1
bucket := hash & bucketMask(h.B)

hash

1
hash := alg.hash(key, uintptr(h.hash0))

Go 用 hmap.hash0(创建 map 时生成的随机数) 和存进 map 的 key 进行哈希运算,相等的 key 和 hash0 每次运算得出的 hash 值也相等

bucketMask()

1
2
3
4
// bucketMask returns 1<<b - 1, optimized for code generation.
func bucketMask(b uint8) uintptr {
return bucketShift(b) - 1
}

bucketMask 做的操作就是把 1 按二进制左移 b 位后再减去 1,比如当传进来的 b 是 4,1 用二进制表示是 0b1,左移 4 位后就是 0b10000,再减去 1 就是 0b1111,名符其实,就是掩码

h.B

h.B 就是 hmap 里的 B 字段,记录了 buckets 数组的长度信息。hmap.buckets 数组的长度是 2 的 hmap.B 次方

如果 B 是 4,那么 buckets 数组的长度是 2 的 4 次方就是 16

与掩码做 & 运算的结果只会落在 0 ~ 掩码这个闭区间里,在这个例子中也就是 0 ~ 15,这恰好是 buckets 数组下标的取值范围。这就是掩码的作用,相当于取模

就这样,从 key 可以映射到 buckets 下标位置,也就知道数据该存放到哪个 bmap 了,正是因为这个映射的存在,所以不需要遍历每一个 bucket 去比较,才把时间复杂度给打成了 O(1)

bmap 里的 tophash 干啥用

tophash 是一个数组,一个 bmap 里可以放多个键值对,所以当有多个数据放进同一个 bmap 时就需要挨个比较了,看到底是哪个数据

下面是从 map 查数据的一段源码中截出来的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return e
}
}

tophash 数组元素里存的是 hash 高位的一部分,就是用于快速比较,因为小,所以快

当然比较完 tophash 还是得再比较一遍 key 来确保是要取的值,因为不同 key 的 hash 值有小概率的可能是相等的(何况更短的 tophash)

好了,看到这里已经知道 map 基本的数据存取是咋做的了。

但是如果数据越来越多,现有的 bmap 放不下了该怎么办?

这就得讲 map 的扩容机制了

扩容

先看下 bmap 中还藏着的一个值

1
2
3
func (b *bmap) overflow(t *maptype) *bmap {
return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-goarch.PtrSize))
}

这个 overflow 也是像 key value 那样通过指针计算拿到的,实际位置是放在 key value 的后边,是 bmap 的最后一部分

overflow 是一个 bmap 指针,它就是为数据溢出做准备的

当要新增一个键值对,而它的目标 bmap 已经满了的时候,就会把一个新的 bmap 通过 overflow 与旧 bmap “连”起来,将新键值对放进新 bmap 里

1
2
3
4
5
// The current bucket and all the overflow buckets connected to it are full, allocate a new one.
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
elem = add(insertk, bucketCnt*uintptr(t.keysize))

取数据时,遍历完当前 bmap 没找到的话要继续通过 overflow 去取溢出 bmap,就像遍历链表一样

1
2
3
4
5
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
...
}
}

到这就有问题了,要是数据一直这么增长下去,overflow bmap 链表越来越长,map 的查询时间复杂度岂不是和遍历链表一样是 O(n)

所以当数据太多时,需要一个把 buckets 数组变长的机制,让 hash 发挥更大作用,将时间复杂度继续打下来,维持在 O(1)

以下这段是从 map 存数据源码中截取出,目的就是检测当前是否需要扩容

1
2
3
4
5
6
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}

翻倍扩容

overLoadFactor 指示数据是否太多,需要翻倍扩容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
const (
// Maximum average load of a bucket that triggers growth is 6.5.
// Represent as loadFactorNum/loadFactorDen, to allow integer math.
loadFactorNum = 13
loadFactorDen = 2
)
// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
func overLoadFactor(count int, B uint8) bool {
return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}
// bucketShift returns 1<<b, optimized for code generation.
func bucketShift(b uint8) uintptr {
// Masking the shift amount allows overflow checks to be elided.
return uintptr(1) << (b & (goarch.PtrSize*8 - 1))
}

hmap.count 是 map 中实际存储数据的数量,当 count 超过 buckets 数组长度的 6.5 倍后,就会触发翻倍扩容

还有一种情况会导致查询效率下降,而且数据量不大无法触发翻倍扩容

先是新增数据导致生成许多 overflow bmap 后又删除了很多数据,导致各个 bmap 中有很多空位置,数据密度下降了,查询时在一个 bmap 里没两个数据就得访问下一个 overflow bmap,这时候就得重新整理一下数据,提高数据密度

等量扩容

tooManyOverflowBuckets 指示 overflow bmap 是否太多,需要整理(等量扩容)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
// Note that most of these overflow buckets must be in sparse use;
// if use was dense, then we'd have already triggered regular map growth.
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
// If the threshold is too low, we do extraneous work.
// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
// "too many" means (approximately) as many overflow buckets as regular buckets.
// See incrnoverflow for more details.
if B > 15 {
B = 15
}
// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
return noverflow >= uint16(1)<<(B&15)
}

hmap.noverflow 是大约有多少 overflow bmap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// incrnoverflow increments h.noverflow.
// noverflow counts the number of overflow buckets.
// This is used to trigger same-size map growth.
// See also tooManyOverflowBuckets.
// To keep hmap small, noverflow is a uint16.
// When there are few buckets, noverflow is an exact count.
// When there are many buckets, noverflow is an approximate count.
func (h *hmap) incrnoverflow() {
// We trigger same-size map growth if there are
// as many overflow buckets as buckets.
// We need to be able to count to 1<<h.B.
if h.B < 16 {
h.noverflow++
return
}
// Increment with probability 1/(1<<(h.B-15)).
// When we reach 1<<15 - 1, we will have approximately
// as many overflow buckets as buckets.
mask := uint32(1)<<(h.B-15) - 1
// Example: if h.B == 18, then mask == 7,
// and fastrand & 7 == 0 with probability 1/8.
if fastrand()&mask == 0 {
h.noverflow++
}
}

B 小于 16 时,noverflow 是确切值,大于等于 16 时就是通过随机数按概率控制每次是否自增 1,为啥要搞这么麻烦呢?

为了降低 hmap 的内存占用量,noverflow 定为了 uint16 类型,为啥是 uint16 不是 uint32?要省这么点内存?因为 uint16 恰好能内存对齐

B 小于 16 时,当 noverflow 大于等于 buckets 数组(2 的 B 次方)长度就会触发等量扩容

B 大于等于 16 时,当 noverflow 大于等于 2 的 15 次方就会触发等量扩容

以上我们知道了 map 有两个扩容触发机制,那么触发后具体是怎么做的呢?

渐进式扩容

触发后会调用 hashGrow() 开始扩容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
func hashGrow(t *maptype, h *hmap) {
// If we've hit the load factor, get bigger.
// Otherwise, there are too many overflow buckets,
// so keep the same number of buckets and "grow" laterally.
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
// commit the grow (atomic wrt gc)
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0

if h.extra != nil && h.extra.overflow != nil {
// Promote current overflow buckets to the old generation.
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow
}

// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
}

这里做的是扩容的初始化步骤,根据扩容要求(等量扩容还是翻倍扩容)确定 B 是否加 1,将 hmap.oldbuckets 指针指向老的 buckets 数组,hmap.buckets 则指向崭新创建的新数组

实际的 bmap 拷贝操作是在后续的 growWork() 和 evacuate() 中做的

hmap.nevacuate 标记的是下一个要迁移的 oldbucket 下标位置,所以被初始化置为 0

因为 buckets 已经是崭新的数组了(没有实际数据),所以 hmap.noverflow 也被重置为 0

growWork() 会在 hmap 赋值和删除 key 时被调用,具体时机是在 hash 值计算完确定好是哪个目标 bucket 但未做实际操作前,调用前先判断当前 hmap 是否正在扩容

1
2
3
4
5
...
if h.growing() {
growWork(t, h, bucket)
}
...
1
2
3
4
5
6
7
8
9
10
func growWork(t *maptype, h *hmap, bucket uintptr) {
// make sure we evacuate the oldbucket corresponding
// to the bucket we're about to use
evacuate(t, h, bucket&h.oldbucketmask())

// evacuate one more oldbucket to make progress on growing
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}

evacuate() 调用一次只会迁移一个 oldbucket

growWork() 会先确保已经把当前要用的 oldbucket 迁移掉,然后再根据 nevacuate 多 evacuate 一个 oldbucket

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// evacDst is an evacuation destination.
type evacDst struct {
b *bmap // current destination bucket
i int // key/elem index into b
k unsafe.Pointer // pointer to current key storage
e unsafe.Pointer // pointer to current elem storage
}

func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
// TODO: reuse overflow buckets instead of using new ones, if there
// is no iterator using the old buckets. (If !oldIterator.)

// xy contains the x and y (low and high) evacuation destinations.
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.e = add(x.k, bucketCnt*uintptr(t.keysize))

if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
// Otherwise GC can see bad pointers.
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.e = add(y.k, bucketCnt*uintptr(t.keysize))
}

for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
e := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
continue
}
if top < minTopHash {
throw("bad map state")
}
k2 := k
if t.indirectkey() {
k2 = *((*unsafe.Pointer)(k2))
}
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.hasher(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.equal(k2, k2) {
// If key != key (NaNs), then the hash could be (and probably
// will be) entirely different from the old hash. Moreover,
// it isn't reproducible. Reproducibility is required in the
// presence of iterators, as our evacuation decision must
// match whatever decision the iterator made.
// Fortunately, we have the freedom to send these keys either
// way. Also, tophash is meaningless for these kinds of keys.
// We let the low bit of tophash drive the evacuation decision.
// We recompute a new random tophash for the next level so
// these keys will get evenly distributed across all buckets
// after multiple grows.
useY = top & 1
top = tophash(hash)
} else {
if hash&newbit != 0 {
useY = 1
}
}
}

if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
throw("bad evacuatedN")
}

b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
dst := &xy[useY] // evacuation destination

if dst.i == bucketCnt {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
if t.indirectkey() {
*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
} else {
typedmemmove(t.key, dst.k, k) // copy elem
}
if t.indirectelem() {
*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
} else {
typedmemmove(t.elem, dst.e, e)
}
dst.i++
// These updates might push these pointers past the end of the
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, uintptr(t.keysize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
// state is maintained there.
ptr := add(b, dataOffset)
n := uintptr(t.bucketsize) - dataOffset
memclrHasPointers(ptr, n)
}
}

if oldbucket == h.nevacuate {
advanceEvacuationMark(h, t, newbit)
}
}

evacuate() 比较长,其主要做的就是迁移一个 oldbucket 和它后面的所有 overflow bmap 到新的 buckets 目标位置,并清理掉旧的 overflow bmap

如果是翻倍扩容的话,oldbucket 的新位置就有两种可能(举个例子:比如原来 B 是 3,现在要迁移的 oldbucket 是 1,那么原先放在 oldbucket 的 key 的 hash 值末 3 位就是 0b001 ,现在 B 是 4 了,那 hash 就要多比较 1 位,多出来的这位要么是 1 要么是 0,也就是说现在的 buckets 下标要么是 0b0001 要么是 0b1001)

根据 nevacuate 迁移后还要更新 nevacuate 的值,指向下一个非空的 oldbucket,遇到空的 oldbucket 就跳过(为了保证当前操作的时间复杂度,还限制了最多只跳 1024 个 oldbucket)

还要判断迁移是否完成,迁移完了就做收尾工作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
h.nevacuate++
// Experiments suggest that 1024 is overkill by at least an order of magnitude.
// Put it in there as a safeguard anyway, to ensure O(1) behavior.
stop := h.nevacuate + 1024
if stop > newbit {
stop = newbit
}
for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
h.nevacuate++
}
if h.nevacuate == newbit { // newbit == # of oldbuckets
// Growing is all done. Free old main bucket array.
h.oldbuckets = nil
// Can discard old overflow buckets as well.
// If they are still referenced by an iterator,
// then the iterator holds a pointers to the slice.
if h.extra != nil {
h.extra.oldoverflow = nil
}
h.flags &^= sameSizeGrow
}
}

好了 Go map 源码暂时就分析到这了,还有 makemap 和遍历过程没分析,有兴趣的话自己看源码去吧

作者

王奔

发布于

2023-09-27

更新于

2024-10-29

许可协议